Masking of the Fc region in human IgG4 by constrained X-ray scattering modelling: implications for antibody function and therapy.

نویسندگان

  • Yuki Abe
  • Jayesh Gor
  • Daniel G Bracewell
  • Stephen J Perkins
  • Paul A Dalby
چکیده

Of the four human IgG antibody subclasses IgG1-IgG4, IgG4 is of interest in that it does not activate complement and exhibits atypical self-association, including the formation of bispecific antibodies. The solution structures of antibodies are critical to understand function and therapeutic applications. Thus IgG4 was studied by synchrotron X-ray scattering. The Guinier X-ray radius of gyration R(G) increased from 5.0 nm to 5.1 nm with an increase of concentration. The distance distribution function P(r) revealed a single peak at 0.3 mg/ml, which resolved into two peaks that shifted to smaller r values at 1.3 mg/ml, even though the maximum dimension of IgG4 was unchanged at 17 nm. This indicated a small concentration dependence of the IgG4 solution structure. By analytical ultracentrifugation, no concentration dependence in the sedimentation coefficient of 6.4 S was observed. Constrained scattering modelling resulted in solution structural determinations that showed that IgG4 has an asymmetric solution structure in which one Fab-Fc pair is closer together than the other pair, and the accessibility of one side of the Fc region is masked by the Fab regions. The averaged distances between the two Fab-Fc pairs change by 1-2 nm with the change in IgG4 concentration. The averaged conformation of the Fab regions appear able to hinder complement C1q binding to the Fc region and the self-association of IgG4 through the Fc region. The present results clarify IgG4 function and provide a starting point to investigate antibody stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fab Conformations in the Solution Structure of Human Immunoglobulin G4 (IgG4) Restrict Access to Its Fc Region

Human IgG4 antibody shows therapeutically useful properties compared with the IgG1, IgG2, and IgG3 subclasses. Thus IgG4 does not activate complement and shows conformational variability. These properties are attributable to its hinge region, which is the shortest of the four IgG subclasses. Using high throughput scattering methods, we studied the solution structure of wild-type IgG4(Ser(222)) ...

متن کامل

The solution structures of two human IgG1 antibodies show conformational stability and accommodate their C1q and FcγR ligands.

The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcγR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges...

متن کامل

Application of small angle X-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues

ABSTRACT Background: Coherent scattering leads to diffraction effects and especially constructive interferences. Theseinterferences carry some information about the molecular structure of the tissue. As breast cancer isthe most widespread cancer in women, this project evaluated the application of small angleX-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues....

متن کامل

ویژگی ها IgG4 و بیماری های مرتبط با IgG4

Abstract Background: In the serum of healthy people, IgG4 has lowest concentration among the different sub-classes of IgG. Elevation of serum IgG4 in response to chronic antigenic stimulation and inflammation has been reported. Inflammation, histopathologic lesions and systemic organ involvement have been reported in the IgG4-related disease (IgG4-RD). In this article we review IgG4 unique f...

متن کامل

Structure determinations of human and chimaeric antibodies by solution scattering and constrained molecular modelling.

X-ray and neutron scattering and analytical ultracentrifugation provide multiparameter structural and compositional information on proteins that complements high-resolution protein crystallography and NMR studies. They are ideal methods to use when either a large protein cannot be crystallized, when scattering provides the only means to obtain a solution structure, or the protein crystal struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 432 1  شماره 

صفحات  -

تاریخ انتشار 2010